Improved LISA Analysis for Zero-Heavy Crack Cocaine Seizure Data

Local Indicators of Spatial Association (LISA) analysis is a useful tool for analyzing and extracting meaningful insights from geographic data. It provides informative statistical analysis that highlights areas of high and low activity. However, LISA analysis methods may not be appropriate for zero-heavy data, as without the correct mathematical context the meaning of the patterns identified by the analysis may be distorted. We demonstrate these issues through statistical analysis and provide the appropriate context for interpreting LISA results for zero-heavy data. We then propose an improved LISA analysis method for spatial data with a majority of zero values. This work constitutes a possible path to a more appropriate understanding of the underlying spatial relationships. Applying our proposed methodology to crack cocaine seizure data in the U.S., we show how our improved methods identify different spatial patterns, which in our context could lead to different real-world law enforcement strategies. As LISA analysis is a popular statistical approach that supports policy analysis and design, and as zero-heavy data is common in these scenarios, we provide a framework that is tailored to zero-heavy contexts, improving interpretations and providing finer categorization of observed data, ultimately leading to better decisions in multiple fields where spatial data is foundational.

Eunseong Jang, The Robert H. Smith School of Business, University of Maryland
Margret Bjarnadottir, The Robert H. Smith School of Business, University of Maryland
Marcus Boyd, National Consortium for the Study of Terrorism and Responses to Terrorism, University of Maryland
S. Raghavan, The Robert H. Smith School of Business & Institute for Systems Research, University of Maryland

INFORMS Journal of Data Science
  • Margret Bjarnadottir
  • S. Raghu Raghavan
  • Decision, Operations and Information Technologies
  • Back to Top