AI-powered Analysts

We explore how brokerage firms’ investments in artificial intelligence (AI) affect their analysts’ information production. We find that analysts employed at brokerage firms with greater AI integration issue more accurate earnings forecasts. Cross-sectional analyses reveal that AI’s benefits are more pronounced for analysts with less firm-specific experience and when the firm’s disclosures are more readable.

Transforming Products into Platforms: Unearthing New Avenues for Business Innovation

It is impossible for brands to ignore digital platform opportunities. Network effects are one of the strongest sources of power and defensibility ever invented and underlie some of the most valuable businesses in the world. Managers and entrepreneurs can leverage the power of platforms by adding some platform elements to their existing products or services, by distributing their brands via existing platforms or by developing their own new platforms.

How to Talk When a Machine Is Listening: Corporate Disclosure in the Age of AI

Growing AI readership (proxied for by machine downloads and ownership by AI-equipped investors) motivates firms to prepare filings friendlier to machine processing and to mitigate linguistic tones that are unfavorably perceived by algorithms. Loughran and McDonald (2011) and BERT available since 2018 serve as event studies supporting attribution of the decrease in the measured negative sentiment to increased machine readership. This relationship is stronger among firms with higher benefits to (e.g., external financing needs) or lower cost (e.g., litigation risk) of sentiment management.

Large language models and synthetic health data: progress and prospects

There is growing interest in the application of machine learning models and advanced analytics to various healthcare processes and operations, including the generation of new clinical discoveries, development of high-quality predictions, and optimization of administrative processes. Machine learning models for prediction and classification rely on extensive and robust datasets, particularly for deep learning models common in health, creating an urgent need for large health datasets.

Back to Top